

Tehničke specifikacije

Specification	EM235, 4 AI/1AQ×12BIT			
Physical Features				
Dimensions(W×H×D)	71.2×80×62mm			
Power Loss(dissipation)	2W			
Power Consumption				
From +5V(from I/O bus)	34 mA			
From L+	60 mA			
L+ voltage range, class 2 or DC sensor supply	20.4 ~ 28.8V DC			
	24 VDC Power Supply Good			
LED indicator	ON = no fault,			
	OFF = no 24 VDC power			
Analog Input Feature				
Number of analog input points	4 points			
Isolation(field side to logic circuit)	Optical isolated: 500VAC, 1 minute			
input type	Differential			
Input Range				
Voltage(unipolar)	0-10V, 0-5V, 0-1V, 0-500mV, 0-100mV, 0-50mV			
Voltage(hinolar)	±10V, ±5V, ±2.5V, ±1V, ±500mV, ±250mV, ±			
Voltage(bipolar)	100mV,±50mV			
Current	0 ~ 20 mA			
Data Range	15 ~ 30V			
Bipolar,full-scale range	0 ~ 32000			
Unipolar, full-scale range	-32000~32000			
Input Resolution				
Voltage(unipolar)	2.5 mV (0 ~ 10V)			
Voltage(unipolar)	1.25 mV (0~5V)			
Voltage(bipolar)	2.5 mV (±5V)			

	1.25 mV (±2.5V)			
Current	5μA (0 ~ 20mA)			
Analog to digital conversion time	<300µs			
Analog input step response	1.5ms			
Common mode rejection	40dB , DC to 60Hz			
Common mode voltage	Signal voltage + Common mode voltage < 12V			
Input Impedance	≥10MΩ			
Input filter attenuation	-3db @ 3.1kHz			
Maximum input voltage	30V			
Maximum input current	30mA			
ADC resolution	12BIT			
Analog Output Features				
Number of analog output points	1			
Signal range				
Voltage output	±10V			
Current output	0 ~ 20mA			
Resolution, full-scale				
Voltage output	12BIT			
Current output	11BIT			
Data word format				
Voltage output	-32000~+32000			
Current output	0~32000			
Accuracy	typical: ±0.5% of full scale; Worse: ±2% of full			
Accuracy	scale			
Setting time				
Voltage output	100µs			
Current output	2ms			
Maximum drive@24VDC power				
Voltage output	5000 ohm, minimum			
Current output	500 ohm, maximum			

Calibration and Configuration

• Location of the calibration and configuration switch

 $\circ \quad \text{Input Calibration} \\$

The calibration adjustment will affect the instrumentation amplifier stage which follows the analog multiplexer. so the calibration affects all user input channels. Variations exist in the component parameters of each input circuit before the analog multiplexer will cause slight differences in the reading values between different channels connected to the same input signal even after calibration.

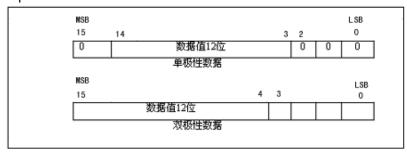
If need to acquire the specifications contained in this data sheet, may be you need to enable analog input filters for all inputs of the module. Please select 64 or more samples to calculate the average value.

To calibrate the input, please use the following steps.

- 1. Turn off the power to the module, select the desired input range.
- 2. Turn on the power to the CPU and module. Allow the module to stabilize for at least 15 minutes.
- 3. Using a transmitter, a voltage source, or a current source, connect a zero value signal to one of the input channels.
- 4. Read the value reported to the CPU from the input channel. Adjust the OFFSET potentiometer until the reading value is zero, or the desired digital data value.
- 5. Connect a full-scale value signal to one of the input channels, read the value reported to the CPU. Adjust the GAIN potentiometer until the reading is 32000, or the desired digita data value.
- 6. Repeat the OFFSET and GAIN calibration once more if required
- Configuration

Table 1 shows how to configure the EM 235 module using the configuration DIP switches. Switches 1 through 6 select the analog input range and resolution. All inputs are set to the same analog input range and format. Table 2 shows how to select for unipolar/bipolar (switch 6), gain (switches 4 and 5), and attenuation (switches 1, 2, and 3). In these tables, ON is closed, and OFF is open.

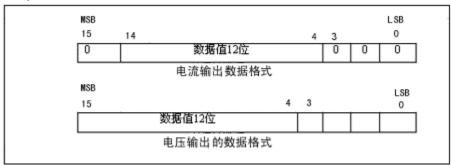
Table 1 EM 235 Configuration Switch Table to select Analog Input Range and Resolution


Unipolar						Full Cools Insuit	Dasalutian
SW1	SW2	SW3	SW4	SW5	SW6	Full-Scale Input	Resolution
ON	OFF	OFF	ON	OFF	ON	0 to 50 mV	12.5 mV
OFF	ON	OFF	ON	OFF	ON	0 to 100 mV	25 mV
ON	OFF	OFF	OFF	ON	ON	0 to 500 mV	125 mV
OFF	ON	OFF	OFF	ON	ON	0 to 1 V	250 mV
ON	OFF	OFF	OFF	OFF	ON	0 to 5 V	1.25 mV

ON	OFF	OFF	OFF	OFF	ON	0 to 20 mA	5 mA	
OFF	ON	OFF	OFF	OFF	ON	0 to 10 V	2.5 mV	
Bipol	ar				Full Cools Input	D lt.'		
SW1 SW2SW3 SW4 SW5 SW6						Full-Scale Input	Resolution	
ON	OFF	OFF	ON	OFF	OFF	+25 mV	12.5 mV	
OFF	ON	OFF	ON	OFF	OFF	+50 mV	25 mV	
OFF	OFF	ON	ON	OFF	OFF	+100 mV	50 mV	
ON	OFF	OFF	OFF	ON	OFF	+250 mV	125 mV	
OFF	ON	OFF	OFF	ON	OFF	+500 mV	250 mV	
OFF	OFF	ON	OFF	ON	OFF	+1 V	500 mV	
ON	OFF	OFF	OFF	OFF	OFF	+2.5 V	1.25 mV	
OFF	ON	OFF	OFF	OFF	OFF	+5 V	2.5 mV	
OFF	OFF	ON	OFF	OFF	OFF	+10 V	5 mV	

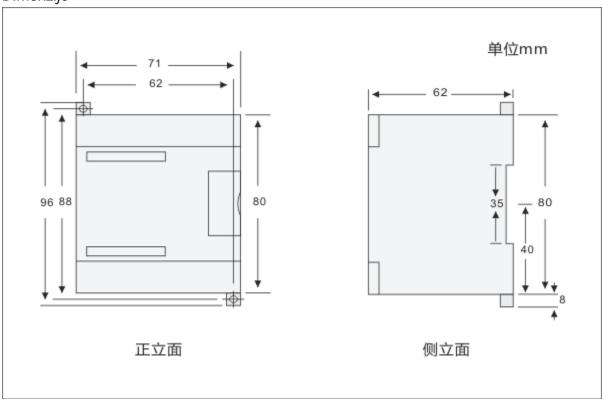
Table 2 EM 235 Configuration Switch Table to select Unipolar/Bipolar, Gain, and Attenuation

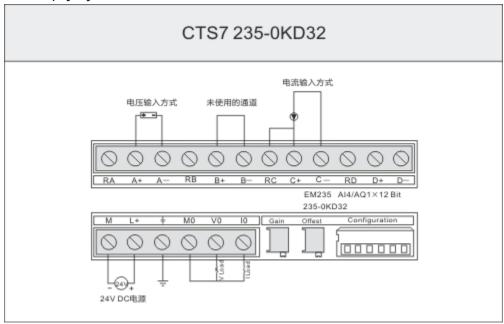
EM 235 Switches						Unipolar/Bipolar	Gain Select	Attenuation
SW1	SW2	SW3	SW4	SW5	SW6	Select	Gain Select	Select
					ON	Unipolar		
					OFF	Bipolar		
			OFF	OFF			x1	
			OFF	ON			x10	
			ON	OFF			x100	
			ON	ON			invalid	
ON	OFF	OFF						0.8
OFF	ON	OFF						0.4
OFF	OFF	ON						0.2


Input Data Word Format

Note

The 12 bits readings of the analog-to-digital converter (ADC) are left-justified in the input data word format. The MSB is the sign bit: zero indicates a positive data word value. In unipolar format, the three trailing zeros cause the data word to be changed by a count of eight for each one-count change in the ADC value. In bipolar format, the four trailing zeros cause the data word to be changed by a count of sixteen for each one count change in the ADC value.


Output Data Word Format


Note

The 12 bits readings of the digital-to-analog converter (DAC) are left-justified in the output data word format. The MSB is the sign bit: zero indicates a positive data word value. The four trailing zeros are truncated before being loaded into the DAC registers. These bits have no effect on the output signal value.

Dimenzije

Šema spajanja

